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A formulation of nonrelativistic, spinless, quantum mechanics is presented which 
is based on four postulates. Three of the postulates are very analogous to 
relations that hold in an operator formulation of classical mechanics, and the 
fourth is that the wave function evolves linearly in time. The conventional 
statistical assertions of quantum theory as well as the Schrt~dinger equation are 
recovered. 

I. INTRODUCTION 

At present there are several familiar and well-accepted techniques by 
means of which one constructs the quantum mechanical description of a 
classical system. These methods are often associated with the names of 
von Neumann, Dirac, and Feynman. In order to put the forthcoming 
discussion into perspective we shall here, very briefly, present the salient 
features of these approaches: (i) yon N e u m a n n ' s  approach (von Neumann, 
1955): Here, one assumes the customary probability density interpretation 
for q~(x,t) and also that I(~,cp,)l 2, (where the cp, are eigenstates of the 
operator assumed to belong to the observable) gives the probability of 
finding the system in state ~0n--as well as finding the value of the observ- 
able to be the eigenvalue associated with q0,--upon measurement of the 
observable. These assumptions are succinctly summarized by the assump- 
tion that II/~(I)q, II 2 gives the probability that, in the state ~p, the observable 
(whose operator has the spectral resolution /~) takes on values in the 
interval 1. Finally, the Schr6dinger equation is assumed. (ii) Dirac 's  ap- 
proach (Dirac, 1947): Here, the emphasis is on operators. One first expresses 
the classical description of the system canonically. It is again assumed that 
operators correspond to classical quantities. This correspondence is quanti- 
fied by the assumption that the Poisson brackets entering the classical 
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formulation are to be replaced by (or correspond to) operator commutator 
brackets. Then the Hamiltonian operator (which is assumed to be the time 
displacement operator for the wave function) is assumed to be the same 
function of the operators corresponding to the p 's  and q's as the classical 
Hamiltonian is of the momenta and position, thus giving the Schrrdinger 
equation. Finally, it is assumed that the values that any observable quantity 
can take on are the eigenvalues of the corresponding operator, and the 
average value of any quantity O in the state ~b is given by the expression 
(q,, ~q,), where t~ is the operator corresponding to 0. (iii) Feynman's ap- 
proach (Feynman and Hibbs, 1965): This approach rests on the notion of a 
probability amplitude for a particle to go from one space-time event to 
another. The magnitude squared of this amplitude is assumed to give the 
probability (density) for the transition. The amplitude itself is assumed to be 
composed of a sum of contributions, each such having the form 
exp[(i/h)Scl ], where Sol is the classical action that characterizes a particle 
undergoing the transition along a prescribed path. The SchrOdinger equa- 
tion as well as all the customary statistical assertions of quantum theory 
result. 

We comment here that there have also been descriptions or approaches 
other than those considered above, but the cases cited are sufficient for our 
purpose. 1 

The purpose of reminding the reader of the above well-known tech- 
niques is really to point out that, except for method (iii), the other 
approaches involve so many disconnected assumptions as certainly not to be 
considered in any sense derivations of quantum mechanics. More specifi- 
cally, these approaches give no intuitive reason for associating operators 
with quantities; provide no such reason or context for their statistical 
assertions; and finally, do not link the statistical assertions to any derivation 
of the SchrOdinger equation. The only feature operating seems to be the 
expedient one that " i t  works." In contrast, method (iii) depends on just a 
few assumptions which, for the most part, have a connected physical 
significance relating, to some extent anyway, to ideas in classical physics. 
This method, in the opinion of the author, amounts to a derivation of 
quantum mechanics. The fact that the physical meaning of the sum over 
histories is only qualitatively transparent does not detract from this judg- 
ment. 

The purpose of the present work is to offer another derivation of 
nonrelativistic quantum mechanics (of spinless systems), similar in rigor and 
intuitive appeal (but probably not in scope) to method (iii). 

~See, for example, Loinger ( 1962); von Neumann ( 1932); Uhlhorn ( 1956); Jordan and Sudarshan 
(1961). 
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In the following sections we present the quantum formulation for 
nonrelativistic (spinless) systems as an analogy to that for classical systems. 

As the entire formulation relies very heavily on the author's recent 
operator formulation of classical mechanics (Cob_n, 1980), we begin by 
reviewing this description of classical mechanics. 

2. OPERATOR FORMULATION OF CLASSICAL 
MECHANICS 

To begin with we envisage a set of replicas of the classical system of 
interest or, equivalently, consider a collection of noninteracting particles 
moving in the prescribed potential field V(x) present in the system of 
interest. Ordinary particle classical mechanics is described by the Hamil- 
ton-Jacobi equation as well as the mass conservation law which, in our 
case, takes the form 

1 2 
2 m ( V S )  + V ( x ) = - S , r  (1) 

and 

with 

V "  ( p 2 v S )  = - -  m o  2 
, t (2a) 

p = V S  and E - - - S ,  (2b) 

Here, S is Hamilton's principal function, and p2 is the density (normalized 
to unity for convenience) in configuration space of the noninteracting 
replicas already mentioned. 

These equations can be conveniently summarized by introducing a 
function, ~bcl = oexp[(i/fl)S] [where (~k, ~b) = f~k*~kdx = const = 1] and the 
operator, 

--~82 V2..}_V.q_]~2 ~ 

where 

2m p 
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for any i/,, and where fl denotes 
(momentum • length). 2 

Then the single equation 

an unspecified 
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constant  of dimension 

implies equations (1) and (2a). 
Furthermore, we discover the following facts concerning averages over 

the classical "wave packet" ~ (where p ~ 0  sufficiently fast at infinity), 
where the brackets ( ) surrounding a quanti ty indicate the average--viz.,  
(p> = fp2pdx = (~b,p~) 

and 

< f ( x ) )  = (+~l, f (x )  ~r ) 

for any function f(x). 

<p) = ( v S )  = (~bcl, - iflV~bd) ~(+~l,  P~bc, ) 

(L)  : <r X p) : ( +c,, L+~, ) (4c) 

where we define the momentum operator as O = - i / 3 V ,  and the angular 
momentum operator as L = - / f i r •  V. 

d d 
<p> = m~-~ <x> = m ~  (+c,, x~bc,) 

d<p>--(-vV> 
<p2) = ( ~cl, r )qt_ 2mflZ(~bcl ' ~bc,) 

1 2 
(~bd, (3Cc,+c,) = <E)  = ~ m ( p  ) + ( V )  (81 

(Apx)2(Ax)2>~fl2/4+Zmfl2(Ax)2(t~cl,t~bcl) (forx, y, orz) (9) 

where, for example, (Apx)2 = <( Px - - (Px))2) ,  and denotes the dispersion in 
Px in the state +~. 

2In the paper by the author where this was first discussed, fl was taken equal to 1, and so did 
not appear as such in the equations. We bring out fl explicitly in this discussion because of its 
relevance to the later quantum mechanical discussion. 

(4a) 

(4b) 

(5) 

(6) 

(7) 

~J(~cl~bcl = iflOt~bcl (3) 
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We comment that the parameter fl is arbitrary, as it remains unde- 
termined by any of the preceding equations. 

It turns out, as we shall now discuss, that equations (4b), (4c), and (8) 
can be expressed in a more unified manner, which will be useful for our 
purposes. We begin by defining the time transformation (translation) opera- 
tor, T =  exp(tOt), the displacement operator, /}~ = exp(a~0x) (and similarly 
/~y and D~), and the rotation operator, / ~  = exp[Ox(z0 ,, -y0~) ]  (and simi- 
larly R ,  a n d / ~ ) .  Beginning with T we note that, for small t, T ~  I + tO t, so 
that we have the relation 

(~cl,T~cl):(~/cl,{]--~t~J~cl]~cl) =~e-(i/B)tE) (to first order in t) 

(10) 

where equations (3) and (8) have also been used. 
In exactly the same way we obtain the additional relations 

(~cl, /)x~cl) = (8(i/B)a'~pX) (to first order in ax) (1 1) 

and 

(q'c,,/~x~b~,) = (e('/r176 (to first order in 0~) (12) 

Now, let 62e(?t), 6~?.( X ), 6~L(?~ ), respectively, denote the probability den- 
sities (at X) for finding the energy E, the x component of momentum Px, or 
the x component of angular momentum L.~. We comment that these 
probability densities would be determined from q'~l; for example, 

lim 1,12(-S,).3x 
Ah-O (Ah) 

where R(AX) is the region in configuration space where )t ~< - S., ~ X + AX. 
Now then, 

where g2 e is 
relations 

(e  -( i /r  } = f x ) dX = @E(t) (13) 

the Fourier transform of 62 e. Similarly, we also have the 

(,e-(i/r and (,e-(i/r (14) 
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Combining,  say, equat ions (13) and (10), we then have 

(+d,  7~q'~l ) = ~E(,) (to first order  in t )  (15) 

And similarly, f rom equations (11), (12) and (14) we have 

( q'd, Dx~kr ) = ~px( - ax ) ( to first order  in a x ) (16) 

and 

(q~c,,/~xq'c, ) = g2r , ( -  Ox) (to first order  in 0 x ) (17) 

So, we see that in classical mechanics  matr ix  elements  of the fundamen-  
tal opera tors  T,I) , I~ are related, for very small values of the involved 
variables, to the Fourier  t ransform of the probabi l i ty  distr ibution functions 
for the observables conjugate to these variables. These relations will be very 
impor tan t  in the next section. 

3. N O N R E L A T I V I S T I C  Q U A N T U M  M E C H A N I C S  

In this section we develop our formula t ion  of nonrelativist ic (spinless) 
quan tum mechanics in analogy to the opera tor  formula t ion  above for 
classical mechanics.  We do this by present ing several postulates,  and 
exploring their consequences.  

3.1. Postulates.  (P0). Q u a n t u m  mechanics,  like classical mechanics,  is 
described by a complex function, ~b = rexp[(i/fl)~] (where fl is unspecified),  
where (~,  ~b) = f~b*~b d x  = const = 1, and where +*~  has the significance of 
being the probabi l i ty  distr ibution funct ion governing measurements  of  x in 
the state q,. 

(PI). Relations in classical mechanics  involving only expectat ion values 
of  observable  quantit ies (like x, E , L , p )  have the same form in quan tum 
mechanics.  Expectat ion values in quan tum mechanics  are interpreted as 
averages over  repeated measurements  on identically p repared  sys tems)  

3Thus, for example, we assume that the relations equations (4a), (5), (6), and (8) (involving only 
the last three terms) hold in quantum mechanics. Note that, as yet, we have not indicated how 
expectation values are to be calculated in quantum mechanics--except for the case of a 
function of x. Also note that, even though (d/dt)(x)= (dx/dt) is valid in classical 
mechanics, we do not assume its validity in quantum mechanics as the last term above does 
not exist then. Thus, we could add a qualifier to (PI) to the effect that classical relations 
between expectation values are also valid in quantum mechanics provided the expectation 
values exist. 
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(PII). The relations between the transform of the probability distribu- 
tion functions and certain matrix elements, which hold only for small values 
of the associated variables in classical mechanics (viz., equations (15), (16), 
and (17)) hold for all values of the variables in quantum mechanics. That is 

= 

for all ~, where the triplet 0, ?~, ~ is, respectively, E, t, T; Px, - a~,/)~ (etc.); 
and L x, - 0 x, 1~ x (etc.). 

(PIII). The time evolution of 4' is governed by a linear operator. 

3.2. Consequences. In this subsection we explore the consequences of 
the above postulates and recover the conventional formulation of nonrela- 
tivistic quantum mechanics. 

From (PIII) and (P0) we have 

(~p(0), ~b(0)) = (~b(t), ~b(t)) = (T~(0),  T~(0)) 

which implies that if" is unitary. Then by Stone's theorem (Stone, 1932), we 
have that 

T =  e - (  i /t~)~c' (19) 

where '~7 is Hermitean (assumed independent of t), and the fl here is the 
same as that entering the postulates. 

By considering small t, the above equation yields the relation 

~1~ = i~Otl ~ (20) 

Before we find the explicit form of ~ ,  we first consider other conse- 
quences. Now, from (PII) and expressing g)e(t) in terms of ~ ) via the 
Fourier transform, we have that 

(~ ,  T t p ) =  (e  -r  (for all t) (21)  

Expanding both sides of this relation in powers of t and equating coeffi- 
cients of like powers then gives the relation 

(~k, ~"qJ)  : (E"  ) (for all integer n ~> 0) (22) 
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In the same way we also obtain the relations 

^n (qJ,/~"+) = <p•) and (~k, Lxq') = <L.~) (23) 

for integer n/> 0. 
Therefore, for any observable o ( = x, p, L, E), with operator 6, we have 

the following expression for the dispersion in o for the state q,: 

(Aa)2 _ ~(a - -  <a)) 2) = (~k, (6 - (a))2@) (24) 

Thus, Aa = 0 iff ~b = (o)q~ = o~b. Therefore, 4 

The values of the observable a are the eigenvalues of 6 (25) 

Further, if the e~enfunctions of 6 are complete (as they are for x, P, L 
and customarily for ~ )  then we can express any q~ as 

+ = Z a~% (26) 
O 

where 6%=0% [and the % are orthonormal since 6 ( = x , 0 , L , ~ )  is 
Hermitean]. Of course, if the spectrum of 6 is continuous, the above sum is 
to be replaced by an integral. Then we have 

= (~, 6~ = f l  a~l 2a" da (27) (o"5+ 

for all integer n, which then implies that 

= ~ / = probability (density) of measuring 
= 

the value o in state ~p (28) 

We now obtain the explicit form for ~ easily as follows. From (PI) and 
equation (8) we have 

( E) ----- (pZ/2m) + (V)  (29) 

4This conclusion involves the experimental observation that suitably repeated measurements ot 
a given observable yield identical results. 
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and, therefore, by equations (22) and (23) we have that 

1 2 (30) 

for all +. Therefore, we have that 

~C = -~m ~ + V(x ) (31) 

which, together with equation (20) is SchriSdinger's equation. 
Finally, we discuss the parameter/3. As already mentioned in Section 2 

the parameter/3 is not fixed by the requirements of classical mechanics. Put 
another way, the Hamilton-Jacobi equation and the equation of mass 
conservation result from equation (3) regardless of the value of/3. However, 
the quantum mechanical situation is different. Here, we have that the values 
of an observable o are the eigenvalues of 6. And since the 6 ( =  [J, [,, ~ )  
contain/3, the eigenvalues will depend on/3, and thus/3 may be found by 
comparison with experiment. A more dramatic example of this is given by 
the relation, say, 

( 2 )2 Apx ) (Ax ---->/32/4 (32) 

which one derives from the quantum formalism in the usual manner. [Note 
that the classical relation, equation (9) is not assumed to hold in quantum 
mechanics as its involves quantities other than expectation values of ob- 
servable quantities.] Unlike the classical case, where (Apx)2(Ax)2 had no 
positive lower bound [because of the negative term, (+el, 0q'd), appearing in 
the expression] in the quantum case there is a lower bound determined by/3 
and amenable to experimental observation. At this point then we are 
justified in identifying/3 with h. 

We see then that we have recovered the conventional formulation of 
quantum mechanics from a unified and fairly intuitive viewpoint. Of course, 
in order to apply the formulation to a very broad range of problems we 
need the additional assumption that, in general, observable operators have 
complete sets of eigenfunctions, as well as a rule of correspondence allowing 
one to construct the operators corresponding to more elaborate functions of 
x, p, L .... etc. These grace notes, however, are considered to be enrichments 
on the main theme. 
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